证明直线与圆相切的方法
证明直线与圆相切的方法
在我们平凡的日常里,大家高中数学免不了要接触或直线与圆相切吧,以下是小编帮大家整理的证明直线与圆相切的方法,供大家参考借鉴,希望可以帮助到有需要的朋友。
证明直线与圆相切主要有以下两种方法:
一、根据切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线。
当已知直线与圆有公共点时,常用此法。辅助线是连结公共点和圆心,只要设法证明直线与半径垂直即可。
例1. (2004年江苏省淮安市中考题)
已知:如图1,在△ABC中,∠BAC的平分线AD交△ABC的外接圆⊙O于点D,交BC于点G。
图1
(1)连结CD,若AG=4,DG=2,求CD的长;(解略)
(2)过点D作EF∥BC,分别交AB、AC的延长线于点E、F。求证:EF与⊙O相切。
证明:(2)连结OD,由∠1=∠2,
得
,则OD⊥BC
所以
因为EF∥BC,所以∠BCD=∠CDF
从而
即EF⊥OD,所以EF与⊙O相切。
例2. (2002年湖北省黄冈市中考题)
如图2,BE是⊙O的直径,点A在BE的'延长线上,弦PD⊥BE,垂足为C,连结OD,且∠AOD=∠APC。
(1)求证:AP是⊙O的切线。
(2)略。
图2
证明:连结OP,因为PD⊥BE,OP=OD
所以∠POB=∠DOB,而∠APD=∠DOB
所以∠POB=∠APD
由PD⊥BE得:∠POB+∠OPC=90°
即∠APD+∠OPC=90°
所以AP是⊙O的切线
二、根据直线与圆的位置关系
若圆心到直线的距离等于圆的半径,则直线与圆相切。
当题设中不能肯定直线与圆有公共点时,常用此法。辅助线是过圆心作该直线的垂线段,只要设法证明垂线段等于半径即可。
例3. (2003年甘肃省中考题)
如图3,Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心、r为半径作圆,当r=2.4时,AB与圆有怎样的位置关系?为什么?
图3
解:作CD⊥AB,垂足为D,则
由CD·AB=AC·BC得:
即AB与圆相切。
例4. 如图4,AB是⊙O的直径,AC⊥,BD⊥,C、D为垂足,且AC+BD=AB,求证:直线与⊙O相切。
图4
证明:过O作OE⊥,E为垂足,则
OE∥AC∥BD,又AO=BO
所以
而
,则
即垂线段OE等于圆的半径,所以直线是⊙O的切线。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 1156092664@qq.com 举报,一经查实,本站将立刻删除。